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Abstract__ we introduce finite difference 

methods for solving ordinary differential 

equation numerically. 

In our research we discuss two types of finite 

difference, the first one is linear finite difference 

methods, and write MATLAB program to get the 

approximation solution, also we put two 

modeling with linear differential equation form. 

At the second one we talk about nonlinear finite 

difference methods, and write MATLAB program 

which approximate the solution of equations of 

this form, then an example was presented. 

   

Finite-Difference Methods For Linear 

Problem 

 

   The finite difference method for the linear 

second-order boundary-value problem,  

                              ,  

         ,                                   

approximations be used to approximate both    

and  .  we select an integer      and divide 

the interval        into       equal 

subintervals whose endpoints are the mesh 

points            , for            , 

where              . Choosing the step 

size   in this manner facilitates the application of 

a matrix. 

the differential equation to be approximated is   

                                                                  

                                                         

   =    ,      = β                             

    is approximation of       for              

 
               

  
        

         

  
  

               ,  [4]                               

for each               

In the form we will consider, Eq      is rewritten 

as  

    
 

 
                          

    
 

 
                    , [4] 

and the resulting system of equation,  in the 

tridiagonal     matrix form  
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MATLAB  Program For Linear 

Finite Difference 

To approximate the solution of linear boundary 

value problem 

                               ,  

       ,        . 

n: number of subintervals. 

function [T,Y] = findiff(p,q,r,a,b,alpha,beta,n)  

T = zeros(1,n+1); 

Y = zeros(1,n-1); 

Va = zeros(1,n-2); 

Vb = zeros(1,n-1); 

Vc = zeros(1,n-2); 

Vd = zeros(1,n-1); 

h=(b-a)/n; 

for j=1:n-1, 

    Vt(j)=a + h*j; 

end 

for j=1:n-1, 

    Vb(j) = -h^2*feval(r,Vt(j)); 

end 

Vb(1) = Vb(1) + (1 + h/2*feval(p,Vt(1)))*alpha; 

Vb(n-1 )= Vb(n-1)+(1 - h/2*feval(p,Vt(n-

1)))*beta; 

for j = 1:n-1, 

    Vd(j) = 2 + h^2*feval(q,Vt(j)); 

end 

for j = 1 : n-2, 

    Va(j) = -1 -h/2*feval(p,Vt(j+1)); 

end 

for j = 1:n-2, 

    Vc(j) = -1 +h/2*feval(p,Vt(j)); 

end 

 

Y = trisys(Va,Vd,Vc,Vb); 

T = [a,Vt,b]; 

Y = [alpha,Y,beta] 

Y'  

plot(T,Y,'o',t,f(t))                            

(f(t) the exact solution) 

end 

function Y=trisys(A,D,C,B) 

n=length(B); 

for k=2:n, 

    mult=A(k-1)/D(k-1); 

    D(k)=D(k)-mult*C(k-1); 

    B(k)=B(k)-mult*B(k-1); 

end 

Y(n)=B(n)/D(n); 

for k= (n-1):-1:1, 

    Y(k)=(B(k)-C(k)*Y(k+1))/D(k); 

end  [4] 

Note that 'trisys' algorithm is represent the 

solution of a tridiagonal linear system using 

[Algorithm         Richared L. Burden, 

Numerical Analysis,   edition, p 408] 

and we modified the program to plot the exact 

and approximation solution.  

 

Bending Modeling And Example   

 



 

Figure      

The distributed loads on the beam is represented 

by    where   is the force of  the loads on the 

beam,   is the length of the beam.  [5]             

We determine all the reactive forces and moment 

acting on the beam, and resolve all the forces in 

to component acting perpendicular and parallel to 

the beams axis. 

 

 

                      Figure      

      The goal here is to find a relationship 

between the curvature (bending) and loads  

(external force). 

Section the beam at each distance  , and draw 

the free body diagram of one of the segment as 

figure       

 

 

Figure      

    The distributed loading on this segment   , 

is represented by it's resultant force only after the 

segment is isolated as a free body diagram, this 

force acts through the centroid of the area 

comprising the distributed loading, a distance of  

 

 
  from the right end as show in figure(1.3) . 

(   is the moment), where             

        
    

 
        

 

 
  

         
   

 
          ,  [5]                         

                                           

We want to find a relation between moment and 

curvature: 

The curvature equation is: 

 

 
 

   

   

    
  

  
 
 
 

 
 

        since   
  

  
  is very small we 

ignore it  

, then   
 

 
 

   

          so      
 

 
               

 By Hooke's law:   𝜎       

 Where (𝜎 is the stress,   is represent the 

constant of proportionality which is called  

modulus of elasticity,   is the strain) 

  
  

 
     

      

  
 

(Where    is the new length after bending) 

So           
  

  
     

Since      𝜌              and  

     𝜌      

So           
           

   
           

          
  

 
  

Note that     𝜎    
 

 
   

{where   is the  moment of inertia ) 

⇒   
 

 
           

⇒     
 

 
        

  

 
      

⇒     
 

 
    

 

  
           since   

 

 
    

⇒       
 

  
 . [5] 

Example :  A beam has rectangular cross section 

with height    of 1m  and width ( ) of 2m, the 

length of the beam    ) is 6m while the load on 



the beam is 75 k N/m. Determine the bending on 

the beam resulting of loading as shown in figure 

       where the boundary condition is        

and         ? 

Sol : 

    
 

  
   and        

   

 
          

       
          

 
              

                    
  

 
    

  
 

  
             

 

  
                

     
 

 
     

, then          
      

  

 
        

                 
 

 
     

   

                      

We want to get the exact solution by integrating 

    

  ⇒    
        

 
 

          

  
          , by 

using the boundary condition  

  
      

 
   

        

  
             it is the 

exact solution  

Let the step size (     ) on       ,  

    .  

 

 

                                 Figure      

        Bending example 

 

                                    

 

Vibrations Modeling And Example 

(Single Degree Of Freedom System)                

 ** single degree of freedom system is that 

system consist of one mass. the number of 

independent displacements required to define the 

displaced positions of all the masses relative to 

their original position is called the number of 

degree of freedom for dynamic analysis.  

   We take an ordinary spring that resists 

compression as well extension and suspend it 

vertically from fixed support as shown in 

figure(1.6) . [1] 

 

Figure(1.6}                      

    At the lower end of the spring we attach a 

body of mass m. we assume m to be so large that 

we can neglect the mass of the spring. If we pull 

the body down a certain distance and then release 

it, it starts vibrating. We assume that it moves 

strictly vertically. 

How can we obtain the motion of the body, say, 

the displacement      as a function of time  ? 

Now this motion is determine by Newton's 

second law                             

⇒                  

Where     
   

   
   , 

 This force is called Inertial force. 

    We choose the downward direction as the 

positive direction, thus regarding downward 

forces as positive and upward as negative. Note 
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that the Inertial force is in the direction of 

motion. 

    From position      we pull the body 

downward. This stretches the spring by some 

amount     ( the distance we pull it down ). 

By Hook's law this causes an upward force    in 

the spring. Where    is proportional to the stretch 

and the constant      is called the spring 

constant  

       

A damping force: the process by which free 

vibration steadily diminishes in amplitude. 

Physically this can be done by connecting the 

body to the dashpot as the figure      

 

Figure      

        , where c is the coefficient of viscous 

damping,    is the velocity of body. It should be 

remembered that the damping force always 

opposes motion. Note that the dynamic 

equilibrium requires that the sum of forces is 

equal zero       

 , so                 

⇒      
 

 
   

 

 
 .  [1] 

Example:  An iron of weight        

stretches a spring 1.09 m what will it's 

motion(the displacement) be if we pull down the 

weight an additional       let the damping 

constant              with boundary condition 

          and  

       ? 

Sol : 

 ⇒     
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by using         
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The exact solution is:   

                              

                     ) 

Let the step size ( )  
 

 
           ,       

 

Figure(1.10)                      

           Vibrations example 

  

Finite-Difference Methods For Nonlinear 

Problem 

    The nonlinear problem is solved by a 

monotone iterative method which leads to a 

sequence of  linearized equations. 

For The general nonlinear boundary-value 

problem    

                                            

                                                       

                                                                                                          

we get 
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Now by making the approximation by employing 

the boundary conditions and deleting the errors 

we get the difference method 

                    β, 

and    
              

               
         

  
    

       (2.3)                  

for each             

The     nonlinear system obtained from this 

method is                                                

for            

2                      
    

  
            

for     

                            
     

  
      

                                                                                

    

              :       

                 +    

f (     ,       
       

  
  )= 0        

 for                 

           + 
  f (   ,     

      

  
  )- = 0. 

[4] 

   We use the Newton's method for nonlinear 

system to approximate the solution to  this 

system. A sequence of 

iterates    
   

   
   

     
   

    is generated that 

converges to the solution of the above system,  

provided that the initial approximation 

   
      

        
   

   is sufficiently close to the 

solution             
 , [4] 

J(                
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Now from Newton's method for nonlinear system 

we can note that  

    = -         F(    )     

Where          =  
  
   

 
  
   

  

and F(    )= 

 
 
 
 
 
 
 
    

      
                 

    
  

     

  
     

   
       

      
                 

    
  

      
   

  
   

 

     
       

                 
    

      
   

  
      

 
 
 
 
 
 
 

 

⇒    
 =   

   +     for each               , 

[4] 

and note that            
        

   
       for  

                

(this is obtained by passing a straight line 

through      and       ) . 

 

MATLAB  Program For Non-Linear Finite 

Difference 

To approximate the solution of  nonlinear 

boundary value problem: 

                             ,              , 

           



n:number of subinterval, m:number of iteration, 

tol: tolerance. 

function [T,w] = 

nonlinear(f,fy,fyp,a,b,alpha,beta,n,m,tol) 

T = zeros(1,n+1); 

w = zeros(1,n-1); 

v = zeros(1,n-1); 

Va = zeros(1,n-2); 

Vb = zeros(1,n-1); 

Vc = zeros(1,n-2); 

Vd = zeros(1,n-1); 

h=(b-a)/n; 

for j=1:n-1, 

    Vt(j)=a + h*j; 

end 

for j=1:n-1, 

    w(j)=alpha +j*((beta-alpha)/(b-a))*h; 

end 

k=1; 

while k<=m, 

Vb(1)=-(2*w(1)-w(2)-

alpha+h^2*feval(f,Vt(1),w(1),(w(2)-alpha)/ 

(2*h))); 

Vb(n-1)=-(2*w(n-1)-beta-w(n-

2)+h^2*feval(f,Vt(n-1),w(n-1),(beta-w(n-

2))/(2*h))); 

Vd(1)=2+feval(fy,Vt(1),w(1),(w(2)-

alpha)/(2*h))*h^2; 

Vd(n-1)=2+feval(fy,Vt(n-1),w(n-1),(beta-w(n-

2))/(2*h))*h^2; 

Va(1)=-1+h/2*feval(fyp,Vt(1),w(1),(w(2)-

alpha)/(2*h)); 

Vc(n-1)=-1-h/2*feval(fyp,Vt(n-1),w(n-1),(beta-

w(n-2))/(2*h)); 

    for j=2:n-2, 

    Vb(j)=-(2*w(j)-w(j+1)-w(j-

1)+h^2*feval(f,Vt(j),w(j),(w(j+1)-w(j-

1))/(2*h))); 

    Vd(j)=2+feval(fy,Vt(j),w(j),(w(j+1)-w(j-

1))/(2*h))*h^2; 

    Va(j)=-1+h/2*feval(fyp,Vt(j),w(j),(w(j+1)-

w(j-1))/(2*h)); 

    Vc(j)=-1-h/2*feval(fyp,Vt(j),w(j),(w(j+1)-w(j-

1))/(2*h)); 

    end 

v=trisys(Va,Vd,Vc,Vb); 

for i=1:n-1, 

    w(i)=w(i)+v(i); 

end 

if (abs(v)<=tol), 

T = [a,Vt,b]; 

w = [alpha,w,beta] 

w'  

plot(T,w) 

break 

k=k+1; 

end 

end 

*note :'trisys' here is the same as in 

MATLAB  Program For Linear Finite 

Difference 

Motor Motion Example 

     Direct–current motors are extensively used in 

variable-speed drives, where good dynamic 

response and steady-state performance are 

required. DC motors can  provide a high starting 

torque and it is also possible to obtain speed 

control over a wide range. examples are in 

robotic drives, printers, machine tools and many 

others. [3] 



 

Figure (2-1) 

The motor motion equation is: 

  
  

  
                                                                                                          

Where.   is the moment of inertia,   is the 

angular velocity (       ),   is the motor torque 

     ,    is the load torque      ,   is the 

viscous friction constant              . 

Note that   
  

  
 . [3]                                                      

   ⇒     
   

   
        

  

  
  

       
 

 
 

        

 
       (2.6)                                                                                 

  becomes constant at steady state  ⇒         

Example: Separately excited DC motor with the 

viscous friction constant                  , 

and the torque of the motor           , the 

load torque          . the moment of inertia 

equal to    of the angular velocity. Where the 

boundary condition is           ,      

         ? 

Sol: 

Note that            ⇒            

By using equation (2.8) we get 

   
       

       
 

                

       
   

   
       

   
         

We want to get the approximation of solution, so 

let the step size (      ) on      ,      . 

      

0.00 0.000000 

0.05    0.007583 

0.10 0.015402 

0.15 0.023452 

0.20    0.031726 

0.25    0.040218 

0.30    0.048922 

 

       

 

 
 

        

4.75 1.398589 

4.80    1.418691 

4.85    1.438884 

4.90   1.459166 

4.95 1.479539 

5.00 1.500000 

** note :                 

 

               Figure (2-2) 

                            Motor motion exampl  
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                                 Figure(2-3) 

         Angular velocity  
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